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Electrohydrodynamic flows with variable mobility coefficient and small interac- 
tion parameter are investigated, It is shown that the charge density and the elec- 

tric field may considerably fluctuate in the region of variation of the stream mo- 

bility coefficient. The structure of electrohydrodynamic condensation and eva- 

poration jumps is examined. It is shown that surface charges may appear in eva- 
poration and condensation jumps, when the mobility coefficient varies in these. 
In such cases the equations derived from laws of conservation at the discontinuity 

are insufficient for the determination of the surface charge intensity and other 

governing parameters downstream of the jump. As in the case of electrohydro- 

dynamic shock waves p], the surface charge intensity and the related components 

of the electric field downstream of the discontinuity, normal to the latter, remain 
indeterminate, and it is necessary to supplement such equations by conditions 

derived by the analysis of the structure of discontinuities. 
The existence of a class of electrohydrodynamic shock waves and condensation 

and evaporation jumps is noted. The existence of these requires that the normal 
component of the electric field upstream of the wave satisfies certain conditions. 

To determine the electrohydrodynamic parameters downstream of the shock wave 
requires that the electric field normal component is specified in that region. 

Limits within which this component can be specified are indicated. 
The mobility coefficient is a complex function of thermodynamic and electro- 

dynamic parameters and of the mixture composition. In a mixture of neutral par- 
ticles and ions the mobility coefficient depends on the pressure of neutral parti- 
cles and in a strong electric field, also, on the field intensity [2, 31. Condensa- 

tion and evaporation jumps can occur in channels of electrohydrodynamic gene- 
rators [4]. Downstream of a condensation jump the ions stick to drops whose 
velocity is close to that of gas. This results in a considerable reduction of the 
mobility coefficient, while the evaporation of drops in the stream may increase 
that coefficient. 

1. Let us consider one-dimensional electrohydrodynamic flows with variable mobi- 
lity coefficient and assume at the beginning that the interaction parameter is small. 
The gasdynamic parameters, such as velocity, density, temperature, etc., are then known 
functions of 5. On these assumptions the equations defining parameters of the electric 
field pattern and the charge density are 

dE - ‘tnj 

z = u+bE ’ i=q(~+bE), i = const (1.1) 
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where u (x) > 0, E (x) and i are projections on the X -axis of velocity. electric field 
intensity, and current density, respectively ; projections of these magnitudes on the Y - 

and z-axes are assumed to be zero ; q (x) > 0 is the charge density, and b (X) > 0 
is the mobility coefficient which is assumed to be a known function of X. In what fol- 

lows we consider cases in which b = b, = const for x < x1 and b = bs = const 

for X > X2, while in the interval X1 < X < X2 the mobility coefficient b (5) either 
monotonically increases or decreases. Equations (1.1) are conveniently presented in the 

dimensionless form C/P E 

- = b*E* -c IQ* ’ d; 
j” = q” (b*E” + Rp*) (1.2) 

where subscript 1 denotes parameters at X = Xi. The first of Eqs. (1.2) can be writ- 
ten as a,!?* 1 dE = Qq* where Q = 4x lq, / E,. If in this case q1 > 0 and 
E, < 0 , the derivative dE* I dE ( 0. 

Let us first consider a flow, when the electric field for E = & is negative, E, < 0 

and R, < 0. Let mobility b (X) increase along the stretch $, , &. The general pat- 
tern of behavior of integral curves defined by the first of Eqs. (1.2) is shown in Fig. 1 

for /’ > 0 and in Figs. 2 and 3 for i < Cl. The behavior of these curves for increasing 
mobility b (z) and i > 0 is shown in Fig. 4. In these figures the lines denoted by 1 
are isoclines along which derivative dE* / dE tends to infinity. These lines are defined 

by the equation 
E* = - R,u* (E)/b* (E) (1.3) 

Above the isoclines E* > - R, u*lb*. The integral curves in Figs. 1. 2 and 4 
relate to 1 E 1 < 1 and the derivative ( dE*/dE 1 < 1 everywhere, except in the 

neighborhood of line 1. The behavior of integral curves is obviously unaffected by any 

arbitrary changes of 1 E 1, only their slope varies. Let us assume that the velocity is con- 
stant, then U* == 1. The case when the velocity is a specified function of E will be 

considered later. However, all formulas will be written in the general form to make them 
applicable to variable velocities, hence U* is nowhere else assumed equal to unity. 

Let us examine a few examples of flows corresponding to integral curves defined by 

the first of Eq. (1.2) and plotted in Fig. 1. Along segment Er Es the mobility coeffici- 

ent increases. The tangent of the isocline angle is negative along this segment and only 
curves lying below isocline 1 , shown by solid lines, have any physical meaning. Let 
at a certain stream cross section E = EO < j, the electrical field I?* (z,,) be defined 

by the integral curve (curve 1 in Fig. 1) along which the inequality 

R& 6) < E* (go) <: _ “;:‘;$” 
6* (42) 

(l.r,) 

is satisfied. 
With increasing E downstream of this point the electrical field is weakening (since 

1 E I<: 1 and ( O* E* + R, u* 1 > E) . in accordance with formula (1.2). From 

point j = jr the mobility coefficient b * begins to increase, while the denominator 

1 b*E*-i-Kyu*l d ecreases; the integral curves approach the abscissa axis. When 
j I,* J,;* +]],zc*l becomes of order 1~ 1 (integral curves come fairly close to the isocline 

I), the order of magnitude of derivarrve 1 dE * / dE 1 becomes equal unity, and the . 
integral curves lie close to the isocline up to E = Es. From thereon the coefficient 
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of mobility remains unchanged, while E* continues to decrease, hence the term b*E*~J 

R,u* increases in absolute value, the slope of integral curves decreases, and the order 

of magnitude of 1 dE*/dE 1 becomes equal a. The increase of the slope of integral 

curves in the isocline neighborhood results in a sharp increase of the charge density, 

Abrupt increases of charge density are thus possible throughout a certain zone $,[s of 

flow or in a part of it, when the mobility coefficient increases. Further downstream be- 

yond point Es, where mobility becomes constant, the charge density begins to decrease 

again, reaching the order of magnitude of the charge density in region E < cr. 

The physical meaning of the described phenomenon is explained in this case as follows. 

The electric field is negative, while the velocity and current density are positive ; the 

ions are carried together with neutral particles by friction. The sign of the term in par- 

entheses in Ohm’s law (the second of Eqs. (1.1)) is positive, the term FE in these in- 
creases in absolute value. and the term ZL -:- bE tends to zero. Since the current density 

/’ is constant, the charge density q increases, the velocity of ion motion z’~ ~= ji CJ 
diminishes, and the derivative dL<itl~ := 4 nq increases. With increasing j the nega- 
tive field E may become positive. When t: is not small, a decrease of the term in pa- 

rentheses also increases the change of the electric field. 

If the mobility variation occurs in a narrow region, the latter may be considered to be 
a discontinuity. The above described behavior of integral curves provides an indication 
of the structure of such discontinuity. From Eqs. (1.1) for the relationship at the discon- 

tinuity we obtain 

where u is the surface charge. Obviously, z(r = 1~s , when u I= const . 
For the determination of the three unknowns E s, qz and (J we have only two equa- 

tions. The surface charge and, consequently, the electric field intensity downstream of 

the discontinuity remain indeterminate. The missing equation is found from the above 

analysis of the structure of such discontinuity. 
In fact, let the width l = j gz - El 1 of the region of mobility change decrease for 

constant b, and 6,. The slope of integral curves in this region and, consequently, the 

charge density increase in this region. For L! --f (I, & -+ 0 and the integral curves leav- 

ing region gr & have vertical tangents, the density charge downstream of the shock 
wave front tends to infinity, which indicates the presence of a surface charge in that 

region. The pattern of integral curve behavior is in this case the same as in the structure 
of an electrohydrodynamic shock wave with 1) -= coast, when a surface charge is formed 

within it p]. 

At the limit downstream of the discontinuity front qz =~ 00. From the second and 
third relations of Eqs. (1.1) follows that downstream of the discontinuity front 

The charge density 4 rapidly decreases with distance from the discontinuity surface. 
A discontinuity of the described kind is the simplest model of an electrohydrodynamic 

shock in which evaporation is taken into account. In fact, let a gas, containing liquid 
drops with ions collected by these in the electric field, flow into the discontinuity. The 
mobility coefficient in such mixture is low and the drops move at a velocity close to 
that of gas. If the drops evaporate downstream of the shock wave front, the mobility 
coefficient increases there. At the shock wave front the velocity, temperature and 
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pressure undergo a change, and the relationships at the discontinuity are the same as in 
a conventional electrohydrodynamic wave fl], except that it is necessary to add to the 
equation of energy the term which defines the evaporation heat absorption. 

For an arbitrary interaction parameter these relationships are 

1/u- = 1)/ 

(1.7) 

(E)=4n;, {q(u y- bE): = 0 (a} = a, -a, 

where U is the specific volume, p is the pressure, y = c,, [ c, and w,,~ - wo2 is 
the heat absorbed during evaporation or released during condensation per unit of mass. 

These equations are written on the assumption that the mass of drops (in condensation 
jumps for which these equations are valid, the mass of vapor being condensed) is small 
in comparison with the mass of carrier gas. Hence it is possible to consider gases 1 and 
2 as perfect and with the same specific heats. 

If the interaction parameter is small, the last term in the second of Eqs. (1.7) can be 
neglected, and the system of equations determining the gasdynamic properties downstream 
of the discontinuity become detached from the system which defines Ez, q2 and o (the 

last two of Eqs. (1.7)). We are thus short of one equation for determining o . 
The electric field and the surface charge intensity downstream of the discontinuity 

front are determined by Eqs. (1.6). In fact, the formulas for which the last two of Eqs. 

(1.7) were derived are the same as Eqs. (1.1). The pattern of integral curve behavior in 
Fig. 1 which is defined by these equations, when u is a given function of r, is the same 

as for u = const. This is related to the velocity decrease within the discontinuity, as 

happens for example in a shock wave, the term ( II _t 6E ) tends to zero even more rapid- 
ly than for u = const, when the mobility increases. 

The formation of a surface charge at the mobility coefficient jump, when the mobility 

increases, does not necessarily always occur. The determination of its occurrence is easy, 
if parameters upstream of the jump and the mobility coefficient downsneam of it are 

known. For small interaction parameter the velocity I,? downstream of the jump is deter- 
mined by the usual gasdynamic formulas. If the term ((2 {- 6,BI is negative, then within 

the structure of such jump a surface charge must be generated (otherwise the sign of 

current 1 would be changed). Its intensity is determined by the second of Eqs. (1.6). 
The obtained inequality coincides with one of the inequalities (1.4). while the second 

of inequalities (1.4) indicates that j > 0. 
If the velocity within the discontinuity increases, the slope of the isocline along seg- 

ment El?& may become positive, and the integral curve pattern changes. It is then the 

same as in the case of condensation jumps considered below (see Fig.4). 
Let the electric field at a certain cross section j = t,, be defined by the integral 

curve (curve z), for which 
E I; (E,) .:,I _ 3;?$- (1.8) 

The electric field then decreases monotonically with increasing E and the integral curve 

slope increases with increasing b *, while the term / b*E*+ R,u*~ remains considerably 

greater than E. It wifl be readily seen that in this case for E -+ 0 such integral curves 
have nowhere vertical tangents, hence the charge density q is finite and at the incipient 



discontinuity its intensity is zero. while the electric field remafns continuous 

(J = 0 , _E-=k, (l.!,) 

The charge density q2 downstream of the discontinuity front is determined by the se- 

cond formula of (1.5). Formulas (I. 9) are valid also for discontinuities in which u is . , 
varying. 

--=4 

Ef 
-c- 

=-_-- 

I 
I 

Fig. 1 Fig. 2 

Fig. 3 

2. We turn now to flows in which the current density j < 0 and the mobility coef- 

ficient b increases, as previously. Let 11 = const. Integral curves related to this case 

are shown in Fig. 2. Only the part of this diagram lying above the isocline, where 

b*E* + R,,I~* > 0 and t-E* I d: < 0 , have a physical meaning. We denote by1 

and 2 the integral curves which intersect the isocline at E - E, and E = Es, respect- 

ively. 

If a certain cross section f = t,, < E, of the stream the electric field is defined by 

a curve lying between curve 2 and the isocline (above the latter), the field 1.” decrea- 

ses with increasing ; up to the point of its intersection with the isocline. From thereon 

the curve runs in the direction of decreasing 5. For the considered initial conditions 

defining the field structure a field with increasing b does not, generally, exist or may 

exist only along part of the segment ’ ” iL>Y’ 

If at a certain cross section ; b. the electric field is defined by an integral curve 

lying at a sufficient distance above the isocline (O*E* -:- /Z,,U* ;> P). then the slope of 

that curve begins to decrease from point 5 = 4,. When the length of segment 5,& 
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tends to zero at constant b, and b, , the related integral curves define the structure of a 
flow with a jump of the mobility coefficient. Such curves have no vertical tangents, 
hence the charge density Q is finite and the surface charge intensity u = O.In this case 

the electric field is continuous, E, = E2 (upstream of the discontinuity b,E, t_ u1 # 0). 

The charge density Q is calculated by the second of Eqs. (1.5). 

Let us assume that the electric field E* (g,) at a certain section g = Es > E2 is 
specified so as to satisfy the inequality 

RdL* (‘2) < E* (E,) < --- 
b* (54 

“‘$;,;I’ (2.4) 
We set in this and all subsequent formulas u * = 1 for u = const. Let us consider the 

behavior of integral curves which may correspond to the selected field E* (Es) . These 

curves are denoted in Fig.2 by 3 . The slope of integral curves along the stretch of de- 
creasing E down to E = Es is small, since 1 E I<< 1. From the point E=& the mobi- 

lity coefficient begins to decrease, hence the term b*E*+R,u* > 0 also decreases, 
while the derivative dE* / dt increases. The integral curves approach the isocline 

and in its proximity turn abruptly to continue along its ~-neighborhood. They cannot 
intersect the isocline and move away from it. From point g = E1 the mobility no 

longer decreases, field &* continues to increase, the integral curve turns and follows the 

direction of the isocline, and the order of magnitude of the derivative 1 dE* / dE 1 
becomes equal 1 E I. 

Let us examine to what kind of discontinuity corresponds the flow defined by these 

integral curves. When the length of segment t1 ja and the width of the a-neighborhood 
tend to zero, the integral curves approach the isocline, and at the limit with E < Es 

the integral curves 1 and B merge with the isocline. For this kind of discontinuity 
the field E, upstream of the discontinuity cannot be arbitrarily specified, there must 

exist there the relationship (obtained from the equation of the isocline) 

~1 + b, E, = 0 (2.2) 

The electric field downstream of such discontinuity may be arbitrarily selected, pro- 

vided it satisfies inequalities (2.1) and is selected within the limits of these. The surface 

charge is calculated by formula 
5= 

I?:, + ul/bl 

4n 
(2.3) 

It is convenient to examine in this case the behavior of integral curves in the plane 

E* g*, where g* = x / L, when ,E = cinj L i b,E12. Here L is a certain charac- 
teristic length which remains constant when the length of segment &* Es* -+ 0 . We 

assume that parameter E = coast is not small. The integral curves lying above the 

isocline are shown in Fig. 3, a. With constant b,and bs and decreasing \ E,* -El* 1 
the integral curves are distorted, as shown in Fig. 3, b. The integral curve 2 presses 

along segment $I* Es* against the isocline and for t* < F;,* against integral curve 
1. Part of integral curves lying to the right of curve 2 (curve 3) is also distorted when 

z* < &*. At the limit, when ; &* - El* 1 --t 0 , integral curves 1 and 2 as well 
as the curves lying between these two merge with the integral curve 1 and the related 

section of the isocline (Fig. 3, c). We shall denote the integral curve passing through 
point t*= Es*, where I:‘* = - llUtl*(,, Z *) I)* (c,*), by 4. With decreasing E and 

) E,* -:,* 1-4~ h t e integral curves d lying to the left of curve 4 approach the verti- 
cal part of the isocline, merge with it, and follow it for t* = &* and for E* < Es* 
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run along the integral Curve 1 (Fig. 3, c). 

Let us consider the example of a flow with a mobility jump which corresponds to the 

described behavior of integral curves. Let at a certain section E* EO* < kl* the 

electric field be defined by the integral curve 1 (Fig. 3, c). With increasing F* the 

fieldE* diminishes and the charge density g* increases. At E* ~- &* the mobility 

coefficient suffers a discontinuity and the integral curve penetrates the discontinuity 

with an infinite derivative (I dE* / dk* I+ 00 when g*+ E2*). This means that the 

charge density immediately ahead of the jump is infinitely high. Further on the integ- 

ral curve follows the vertical part of the isocline and then can join any integral curve 9. 

By specifying the electric field Ez * downstream of the discontinuity we determine the 

particular integral curve 2 which defines the variation of ti* in that region and also 

5 (Formula (2.3)). 

If along segment E1 5, the velocity /I =: II (x) either decreases or increases, so that 

the isocline slope is negative all along that segment, all of the results derived in Sect. 2 

remain unchanged. The considered flow defines the structure of the evaporation jump 

(0 increases) in electrohydrodynamics with a small interaction parameter. If the velo- 

city increases with increasing ; at such rate that the isocline slope becomes positive, 

the pattern of integral curve behavior changes (see Sect. 4). 

We note that discontinuities of the kind considered here, when the field upstream of 

the discontinuity must satisfy Eq. (2.2) and downstream of the wave is specified also, 

occur in electrohydrodynamic shock waves with constant mobility coefficients. In fact, 

if the velocity within the shock wave structure decreases (e. g. for small interaction 

parameters), while 1 < u and 6 < CJ , the integral curves in the E*S -plane behave in 

exactly the same manner, as in the case considered above. 

Shock waves whose structure upstream of the wave front requires the specification of 

particular conditions are known in gasdynamics (condensation jumps) [S] and in magne- 

tohydrodynamics [6]. 

3. Let us consider the case in which mobility diminishes. We assume that u = const 

and the current density 1’ > (1 . Line 1 (Fig. 4) represents the isocline along which the 

-* 
derivative d,!P 1 dE becomes infinite. Only the part of 

1 
t //XX Fig. 4 which lies below the isocline, where the integral 

// 
4’ 

& 

curves are shown by solid lines, has any physical meaning. 

/ It is seen that with decreasing b* the integral curves 

I I’ 

mildly slope toward the k-axis. 

When j 1 0 , the ions are carried by neutral particles 

by friction against the electric field force. With decreas- 

ing mobility the effect of friction increases and the elec- 

tric field force decreases, the term ( ZL + bE ) increases, 

&7 F, i? 62 and the charge density diminishes and with it the deriva- 

tlve tlfi; / & , also, diminishes. In dimensionless coor- 

Fig. 4 dinates the term O* I:* -!. f(,lz~* < (_I , while increa%- 

ing in absolute value with increasing $, and the derivative 

/ dl? ’ d:] d ecteases. The above relates also to the case in which in the region of 

decreasing mobility the velocity /l increases. 

When the regior. z, :, _ is small, the related flow may be used as a model of the ele- 

ctrohydrodynamic flow which takes place in a ~~onderlsarion j !III!~. Let us consider the 
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flow of a mixture of a neutral gas with ions containing a supersaturated steam. We de- 
note the mobility coefficient by b,. The condensation of steam occurs in a certain nar- 

row region, where the ions adhere to fluid droplets moving at a velocity close to that of 
gas and the mobility coefficient b markedly decreases. It can be seen that the relation- 

ships in an electrohydrodynamic condensation jump are the same as in an evaporation 

jump (1.7) ; the remainder w,,~- w02 is the quantity of heat released by condensation. 

As in the case of electrohydrodynamic snack waves p] and of evaporation jumps consi- 
dered in Sects. 1 and 2, the system of equations defining the discontinuity is not closed : 
the equation for determining the surface charge 0 at the discontinuity front and, con- 

sequently, of the electric field normal component downstream of the discontinuity is 

missing. This equation can be obtained by analyzing the pattern of integral curves in 

the E*E -plane with u (z) as the variable. 
It is known in gasdynamics [S] that in subsonic condensation jumps the normal velo- 

city component of gas downstream of the jump front is greater than that upstream of 
the front u. > ul, pz < pl, ul G aI, u2 < a2? P2 < PI 

In supersonic condensation jumps the normal component of gas velocity upstream of the 
front is greater than downstream of it 

u2 < u,, p2 > ply u1 > al9 ~2 > a2, P2 > PI 

Let us first consider the case of monotonically increasing velocity in the electrohydro- 

dynamic condensation jump. When the interaction parameter is small, this corresponds 

in gasdynamics to a subsonic condensation jump. The pattern of integral curve behavior 
is the same as for u = const (Fig. 4). The derivative 1 dE* / dg 1 decreases in region 
El& with increasing E at a faster rate than in the case of u = con&. When I --t 0, 
the region of variation of b narrows and the integral curves in Fig.4 have nowhere ver- 

tical tangents. Hence for j > 0 the charge density is finite, its intensity rs = 0 
throughout the subsonic condensation jump, and the electric field E, = E, Is continuous. 

The charge density qs is determined by the second of Eqs. (1.5). 

The integral curves in Fig.4 also define the solution for the evaporation jump struc- 

ture for j > 0 . Since the mobility within a jump increases at a lower rate than the 
velocity, the slope of the isocline corresponds to that shown in Fig.4 (see Sect. 1). 

Let us consider the case of monotonically decreasing velocity in an electrohydrody- 

namic condensation jump. When the interaction parameter is small, this corresponds in 
gasdynamics to supersonic condensation jumps. Two different solutions are possible in 
this case. 

Let the isocline defined by Eq. (li3) behave as shown in Fig. 4, i.e. its slope in re- 
gion &Es is positive. The behavior of integral cmves in the E*g-plane is of the same 
pattern as in the case in which the velocity in the jump increases (Fig. 4). 

It was shown above that in a jump whose structure is defined by these integral curves 

the occurrence of a surface charge is impossible : (J = 0 and E, = E,. If the isocline 
slope (1.3) is negative, it behaves in region E1g, as shown in Fig. 1. Since in this case 
j > 0, only the branches of integral curves lying below the isocline have a physical 

meaning. 
The pattern in this case is the same as that considered in Sect. 1 for an evaporation 

jump (when b increases and u decreases) and the behavior of integral curves is that 
shown in Fig. 1. With this pattern of integral curve behavior (see Sect. 1) the formation 



of surfacecharge at the condensation jump front is possible. The charge intensity is de- 
termined by the second formula of (1.6). To calculate the electric field downstream 

of the jump front we use the first formula of (1.6). The system of equations determin- 

ing the condensation jump (1.7) is thus closed. 

4. Let us now consider the case of decreasing mobility coefficient and j < 0. Let 

u = coust. Only the curves lying above the isocline, where b*E* -t R,,zc* > 0 have 

physical meaning. Let at a certain cross section E = 5, < Ei of the flow the electric 

field E* be defined by an integral curve lying above the isocline between curves 1 
and 2 which intersect the isocline at % z & and E = g2 , respectively. The mobi- 

lity coefficient b* begins to decrease from point g = E,. and the term b* E”+ R,~L* 

tends to zero. The integral curves intersect the isocline between points E, and Es and 

then continue in the direction of decreasing E. In this case no flow structure exists in 
the region of decreasing mobility. The physical meaning of this is as follows. With de- 

creasing mobility b the friction between ions and neutral particles increases so that the 
electric field is no longer capable of moving the ions. The velocity of the latter decrea- 

ses and the charge density tends to infinity. Let at a certain cross section g = g, of the 
flow the electric field E* be defined by a point lying above curve 2. With decreasing 

b the slope of integral curves in the E* E-plane and, consequently, also the charge den- 
sity increase. However the intersection with the isocline occurs at g > E,, and the 

flow structure along segment ii;, exists. When the length of segment E, E, tends to 
zero, the integral curves have no vertical tangents, hence the surface charge density along 

the incipient jump is zero and the normal component of the electrical field is continu- 

ous, while the charge density (I suffers a discontinuity. 
Let 21* I- IL* (E) be a given function. We assume the isocline slope along segment 

tr E, to be positive. Such flow corresponds either to a subsonic (II increases at the jump) 
or to a supersonic condensation jump (zd decreases so that the tangent remains positive 

along segment Eij,). Then the described jumps are either nonexistent or they are of 

the gasdynamic kind : 5 = 0 and E, = E?. and 4% is determined by the second of 

Eqs. (1.5). These integral curves also define the evaporation jump structure, in which 
j < 0, mobiiity increases, and the velocity increases at such high rate that the isocline 
slope along segment zi& remains positive. 

Let the velocity in a supersonic condensation jump decrease at such rate that the 

isochne slope along segment b,bT 2 ” becomes negative, as shown in Fig.2. Only the upper 

part of this figure, where b*E* R,,JL* > (J . The flow in the jump is then the same 

as in an evaporation jump, when j < (J, the mobility coefficient 0 increases, and the 

velocity in the jump decreases. Condensation jumps are then possible ; their existence 
is only possible, if the electric field upstream of the jump satisfies the relationship 
ui-‘r bE, ==O.The electric field downstream of such jump must be specified within limits 
defined by the inequalities (2.1) (see Sect. 2). Condensation jumps along which no sur- 
face charge develops, i.e. 2 -Cm (1 and E, = E, are also possible (the conventional 
gasdynamic condensation jump). 

5. Let us consider the flow, when the electric field E > 0 (velocity u > 0 ). It 
follows from Eqs. (1.1) that in this case a surface charge cannot exist, the term u --,- 
bE # 0, the condensation and evaporation jumps are purely gasdynamic, and the charge 
density 92 is subject to discontinuity, as shown by the second of Eqs. (1. 5). However in 
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regions of mobility variation a considerable increase of the charge may occur. Let in 
in region z1x2 the mobility decrease from b, to zero and u = const. At point 2: = 4 the 

current density is j = ppr~ = q1 (I( -i D,b,). If b,E, > u (R, < I), then q2 / q1 = 
R,-‘ > 1. An abrupt increase of charge takes place in region ~1x2 . If u = u (I) , then 

for I$,, e 1 we have the relationship 

This formula is also valid for condensation jumps. If this takes place at decreasing 

velocity in the jump, the charge density increases even mor.e than for u = const. If, on 
the other hand, the velocity in a condensation jump increases, the charge density may 

either increase or decrease . The variation of the electricity field in region x1z2 is pro- 
portional to the width of that region and can be considerable. If x2 - x1 4 0. the field 
in condensation and evaporation jumps is, however, continuous. 

If the mobility increases from a low value to a certain value b,,so that up < b,E,, 

the charge density decreases, hence 

The author thanks A.G.Kulikovskii for discussing this work. 
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